

 Navigation

 	
 index

 	Bugsnag Python Notifier latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/bugsnag-python-notifier/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/bugsnag-python-notifier/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Bugsnag Python Notifier latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 CHANGELOG.html

 Navigation

 		
 index

 		Bugsnag Python Notifier latest documentation »

Changelog

2.3.1

		Redact HTTP_COOKIE and HTTP_AUTHORIZATION by default

2.3.0

		Add add_metadata_tab method

		Fix Flask integration overriding user information

2.2.0

		Optionally send a snippet of code along with each frame in the stacktrace

		Default to https:// for reports.

2.1.0

		Allow custom meta-data when using the Bugsnag log handler (thanks @lwcolton!)

		Update flask support for python 3.4 (thanks @stas!)

		Show json post body for flask requests (thanks @stas!)

2.0.2

		Better logging support

		More robustness for notifies during shutdown

		Call close() on WSGI apps that are only iterable, not iterators

2.0.1

		Now works on Python 3.2

2.0.0

		Read request-local settings in bugsnag.notify

		Add support for before_notify callbacks

		Avoid truncating values when unnecessary

		Send user data to bugsnag for django

1.5.0

		Send ‘severity’ of error to Bugsnag

		Add ‘payloadVersion’

1.4.0

		Make params_filter configuration work

1.3.2

		Allow custom groupingHash

1.3.1

		Send hostname to Bugsnag

1.3.0

		Added celery integration

1.2.7

		Configure the log handler in the constructor for when called from cron job.

1.2.6

		Read the API key from the environment for Heroku users

		Best guess a project_root for a sensible default

1.2.5

		Add blinker as a dependency, makes using Bugsnag with Flask easier

1.2.4

		Removed automatic userId population from username in django, to avoid a
database lookup

1.2.3

		Fix cookies bug in Tornado apps

1.2.2

		Added support for Tornado apps

1.2.1

		Additional protection for bad string encodings

1.2.0

		Fixed issue when non-unicode data was passed in metadata

		Filters are now applied for substring matches (“password” will now also
match “confirm_password”)

		Ignore django.http.Http404 exceptions by default when using
django middleware

1.1.2

		Log trace when HTTP exception

1.1.1

		Log the trace when theres an exception notifying

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Bugsnag Python Notifier latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

CONTRIBUTING.html

 Navigation

 		
 index

 		Bugsnag Python Notifier latest documentation »

Contributing

		Fork [https://help.github.com/articles/fork-a-repo] the notifier on github [https://github.com/bugsnag/bugsnag-python]

		Commit and push until you are happy with your contribution

		Run the tests

		Make a pull request [https://help.github.com/articles/using-pull-requests]

		Thanks!

Running the tests

		Install nosetests [https://nose.readthedocs.org/] with pip install nose

		Run the tests:

./setup.py test

Running the example django app

		Install bugsnag somewhere the example app can read from it.

sudo python setup.py install

		Install the rest of the app requirements

cd example/django
pip install -r requirements.txt

		Boot django

python manage.py runserver

Releasing a new version

If you’re on the core team, you can release Bugsnag as follows:

Prerequisites

		Create a PyPI account

		Get someone to add you as contributer on bugsnag-python in PyPI

		Create or edit the file ~/.pypirc

[server-login]
username: your-pypi-username
password: your-pypi-password

Doing a release

		Update the version number in setup.py

		Update the CHANGELOG.md, and README.md if necessary

		Commit

git commit -am v2.x.x

		Tag the release in git

git tag v2.x.x

		Push to git

git push origin master && git push --tags

		Push the release to PyPI

python setup.py sdist upload

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down.png

README.html

 Navigation

 		
 index

 		Bugsnag Python Notifier latest documentation »

Bugsnag Notifier for Python

The Bugsnag Notifier for Python gives you instant notification of exceptions
thrown from your Django, WSGI, Tornado, Flask or plain Python app.
Any uncaught exceptions will trigger a notification to be sent to your
Bugsnag project.

Bugsnag [http://bugsnag.com] captures errors in real-time from your web,
mobile and desktop applications, helping you to understand and resolve them
as fast as possible. Create a free account [http://bugsnag.com] to start
capturing exceptions from your applications.

How to Install

Django Apps

		Install the Bugsnag Notifier

pip install bugsnag

		Configure the notifier in your Django settings.py:

BUGSNAG = {
 "api_key": "YOUR_API_KEY_HERE",
 "project_root": "/path/to/your/app",
}

If not set the project_root will default to the current working directory,
and api_key will default to the BUGSNAG_API_KEY environment variable.

		Add the Bugsnag middleware to your app by editing your MIDDLEWARE_CLASSES in settings.py.

MIDDLEWARE_CLASSES = (
 ...
 "bugsnag.django.middleware.BugsnagMiddleware"
)

Flask Apps

		Install the Bugsnag Notifier

pip install bugsnag

		Configure Bugsnag and attach it to Flask’s exception handler

Import bugsnag
import bugsnag
from bugsnag.flask import handle_exceptions

Configure Bugsnag
bugsnag.configure(
 api_key = "YOUR_API_KEY_HERE",
 project_root = "/path/to/your/app",
)

Attach Bugsnag to Flask's exception handler
app = Flask(__name__)
handle_exceptions(app)

WSGI Apps

		Install the Bugsnag Notifier

pip install bugsnag

		Configure Bugsnag and attach the WSGI middleware

Configure Bugsnag
import bugsnag
from bugsnag.wsgi.middleware import BugsnagMiddleware

bugsnag.configure(
 api_key = "YOUR_API_KEY_HERE",
 project_root = "/path/to/your/app",
)

Wrap your WSGI app with Bugsnag
application = BugsnagMiddleware(application)

Tornado Apps

		Install the Bugsnag Notifier

pip install bugsnag

		Configure the notifier when your python app starts

import bugsnag
bugsnag.configure(
 api_key = "YOUR_API_KEY_HERE",
 project_root = "/path/to/your/app",
)

		Have your request handlers inherit from BugsnagRequestHandler

from bugsnag.tornado import BugsnagRequestHandler

class MyHandler(BugsnagRequestHandler):
 # ...

Bottle Apps

		Install the Bugsnag notifier

pip install bugsnag

		Configure the notifier when your python app starts

import bugsnag
bugsnag.configure(
 api_key = "YOUR_API_KEY_HERE",
 project_root = "/path/to/your/app"
)

		Add the Bugsnag middleware

import bottle
from bugsnag.wsgi.middleware import BugsnagMiddleware

app = bottle.app()
Don't catch exceptions in bottle.
app.catchall = False
Catch them in Bugsnag instead.
myapp = BugsnagMiddleware(app)
bottle.run(app=myapp)

Celery

		Install the Bugsnag notifier

pip install bugsnag

		Configure the notifier in your worker module

import bugsnag
bugsnag.configure(
 api_key = "YOUR_API_KEY_HERE",
 project_root = "/path/to/your/app"
)

		Add the bugsnag failure handler to celery

from bugsnag.celery import connect_failure_handler
connect_failure_handler()

Other Python Apps

		Install the Bugsnag Notifier

pip install bugsnag

		Configure the notifier when your python app starts

import bugsnag
bugsnag.configure(
 api_key = "YOUR_API_KEY_HERE",
 project_root = "/path/to/your/app",
)

Sending Handled Exceptions to Bugsnag

Unhandled exceptions are automatically sent to Bugsnag by the notifier.
If you would like to send handled exceptions to Bugsnag, you should import
the bugsnag module:

import bugsnag

Then to notify Bugsnag of an error, you can call bugsnag.notify:

bugsnag.notify(Exception("Something broke!"))

You can also pass additional configuration setting
in as named parameters. These parameters will only affect the current call
to notify. For example:

bugsnag.notify(Exception("Something broke!"),
 context="myContext",
 meta_data={"special_info":{"request_id": 12345, "message_id": 854}}
)

Using the logging framework

You can also hook Bugsnag up to Python’s logging
framework [https://docs.python.org/2/library/logging.html] so that anything of
level error or above is logged to Bugsnag.

Here is a plain Python example:

import logging

from bugsnag.handlers import BugsnagHandler

#call bugsnag.configure() here
logger = logging.getLogger("test.logger")
logger.addHandler(BugsnagHandler())

extra_fields

The BugsnagHandler accepts a special keyword argument to its __init__()
function: ‘extra_fields’. This is optional and may be a dictionary of
extra attributes to gather from each LogRecord and insert into meta_data
so they get sent to Bugsnag. The keys in this dictionary should be tab
names for where you would like the data displayed in Bugsnag, like the
top level keys in meta_data. The values should be attributes to pull
off each log record and enter into that meta_data section. The attributes
do not need to exist on the log record, if they don’t exist they will
just be ignored. Example:

bs_handler = BugsnagHandler(extra_fields={"some_tab":["context_attribute"]})

This is very useful if you are assigning context-specific attributes
to your LogRecord objects, as described in the python logging cookbook [https://docs.python.org/3.4/howto/logging-cookbook.html#using-filters-to-impart-contextual-information].

Logging Framework + Django

In django, you can use this configuration in your settings.py. For
other apps and frameworks, you can configure the handler as appropriate.

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,

 'root': {
 'level': 'ERROR',
 'handlers': ['bugsnag'],
 },

 'handlers': {
 'bugsnag': {
 'level': 'INFO',
 'class': 'bugsnag.handlers.BugsnagHandler',
 },
 }
}

Configuration

To configure additional Bugsnag settings, pass the settings as named parameters to the
bugsnag.configure method. For example:

bugsnag.configure(
 api_key = "YOUR_API_KEY_HERE",
 notify_release_stages = ["production", "development"],
)

If you are using Django, you can instead add a dictionary called BUGSNAG to
your settings.py file. For example:

BUGSNAG = {
 "api_key": "YOUR_API_KEY_HERE",
 "notify_release_stages": ["production", "development"],
}

The available settings are detailed below.

api_key

Your Bugsnag API key (required).

bugsnag.configure(api_key = "YOUR_API_KEY_HERE")

release_stage

If you would like to distinguish between errors that happen in different
stages of the application release process (development, production, etc)
you can set the release_stage that is reported to Bugsnag.

bugsnag.configure(release_stage = "development")

In Django apps this value is automatically set to “development” if
the server running is the Django development server. Otherwise the default is
“production”.

notify_release_stages

By default, we will notify Bugsnag of exceptions that happen in any
release_stage. If you would like to change which release stages notify
Bugsnag of exceptions you can set notify_release_stages:

bugsnag.configure(notify_release_stages = ["production", "development"])

auto_notify

By default, we will automatically notify Bugsnag of any fatal exceptions
in your application. If you want to stop this from happening, you can set
auto_notify:

bugsnag.configure(auto_notify = False)

send_code

By default, we send a few lines of source code to Bugsnag along with
the exception report. If you want to stop this from happening, you can set
send_code:

bugsnag.configure(send_code = False)

use_ssl

Enforces all communication with bugsnag.com be made via ssl. To disable
this, set it to False.

bugsnag.configure(use_ssl = True)

By default, use_ssl is set to True.

project_root

We mark stacktrace lines as inProject if they come from files inside your
project_root.

bugsnag.configure(project_root = "/var/www/myproject")

app_version

If you want to track which versions of your application each exception
happens in, you can set app_version. This is set to None by default.

bugsnag.configure(app_version = "2.5.1")

params_filters

Sets the strings to filter out from the params hashes before sending
them to Bugsnag. Use this if you want to ensure you don’t send
sensitive data such as passwords, and credit card numbers to our
servers. Any keys which contain these strings will be filtered.

bugsnag.configure(params_filters = ["credit_card_number"])

By default, params_filters is set to ["password", "password_confirmation", "cookie", "authorization"]

ignore_classes

Sets which exception classes should never be sent to Bugnsag. This feature is
useful when you have a large number of 404 errors and dont want them all sent
to Bugsnag.

bugsnag.configure(ignore_classes = ["django.http.Http404"])

By default, ignore_classes is set to []

traceback_exclude_modules

A list of modules to exclude from tracebacks. This is useful if
you are wrapping bugsnag.notifty() in with your own library.
Normally every traceback would end with that line in
your logging library, which would cause bugsnag to group all errors
as occurences of a single error, no matter where they came from in
your program. You can use this option to exclude your custom logging
module from the tracebacks, causing things to be grouped properly.
Note this list must contain actual modules of type module,
not strings that are module identifiers.

import myapp.custom_logging
bugsnag.configure(traceback_exclude_modules = [myapp.custom_logging])

Per-request Configuration

The following configuration options can be set on a per-request basis.
Setting or overriding these allows you to attach useful request-specific
data along with exceptions, which can speed up debugging.

To configure these settings, you can call bugsnag.configure_request,
for example:

bugsnag.configure_request(
 context = "/users",
 user = {"id":"bob-hoskins"},
)

The available settings are detailed below.

context

A string representing what was happening in your application at the time of
the error. In Django apps, this is automatically set to be the path of the
current request.

bugsnag.configure_request(context = "/users")

user

A dictionary of “id”, “email”, and “name” that are used to identify and search for
the user in Bugsnag.

By default the “id” is set to the username of the current django user, or the IP
address of the connection.

bugsnag.configure_request(user={"id":"bob-hoskins", "name": "Bob Hoskins", "email": "foo@bar.com"})

(The legacy parameter user_id acts as though you set a user hash with just the id property).

meta_data

A dictionary of dictionaries, each of which appears as a tab on the Bugsnag dashboard.

bugsnag.configure_request("metadata":{"account":{"name":"ACME Inc.", "premium": True}})

Per-request metadata

To update the metaData associated with a request you can use bugsnag.add_metadata_tab.
This function will update the tab if it already exists.

bugsnag.add_metadata_tab("account", {"premium": True})

Notification options

The Bugsnag.notify function accepts a large number of keyword arguments. These
can be used to override configuration or to send more data to bugsnag.

traceback

The traceback to use for the exception. If omitted this will be read from sys.exc_info.

bugsnag.notify(e, sys.exc_info()[2])

api_key

Use a specific API key for this notification. (defaults to bugsnag.configuration.api_key)

bugsnag.notify(e, api_key="YOUR_API_KEY_HERE")

context

A string representing what was happening in your application at the time of
the error. In Django apps, this is automatically set to be the path of the
current request.

bugsnag.notify(e, context="sign_up")

severity

You can set the severity of an error in Bugsnag by including the severity option when
notifying bugsnag of the error,

bugsnag.notify(Exception("Something broke!"), severity="error")

Valid severities are error, warning and info.

Severity is displayed in the dashboard and can be used to filter the error list.
By default all crashes (or unhandled exceptions) are set to error and all
bugsnag.notify calls default to warning.

user

Information about the user currently using your app. This should be a dictionary
containing “id”, “email” and “name” keys.

bugsnag.notify(e, user={"id":"bob-hoskins", name: "Bob Hoskins", email: "foo@bar.com"})

meta_data

A dictionary of dictionaries. Each dictionary will show up as a tab on Bugsnag.

bugsnag.notify(e, "metadata":{"account":{"name":"ACME Inc.", "premium": True}})

Any key that has no other meaning will also be treated as meta-data, so you could
have done:

bugsnag.notify(e, {"account":{"name":"ACME Inc.", "premium": True})

grouping_hash

A string to use to group errors using your own custom grouping algorithm.

bugsnag.notify(e, grouping_hash="/path/to/file.py:30|RuntimeError")

Before Notify Callbacks

If you need to modify the payload before sending it to bugsnag you can register a
before-notify callback:

def callback(notification):

 # if you return False, the notification will not be sent to
 # Bugsnag. (see ignore_classes for simple cases)
 if isinstance(notification.exception, KeyboardInterrupt):
 return False

 # You can set properties of the notification and
 # add your own custom meta-data.
 notification.user = {"id": current_user.id, "name": current_user.name, "email": current_user.email}
 notification.add_tab("account", {"paying": current_user.acccount.is_paying()})

bugsnag.before_notify(callback)

Reporting Bugs or Feature Requests

Please report any bugs or feature requests on the github issues page for this
project here:

https://github.com/bugsnag/bugsnag-python/issues

We love pull requests. See CONTRIBUTING.md [https://github.com/bugsnag/bugsnag-python/blob/master/CONTRIBUTING.md] for details
on how to get set up.

License

The Bugsnag python notifier is free software released under the MIT License.
See LICENSE.txt [https://github.com/bugsnag/bugsnag-python/blob/master/LICENSE.txt] for details.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

example/tornado/README.html

 Navigation

 		
 index

 		Bugsnag Python Notifier latest documentation »

Bugsnag Tornado demo

This Tornado application demonstrates how to use Bugsnag with the Tornado web
framework for Python. Before testing it, open up the server.py
file and configure your API key.

BUGSNAG = {
 "api_key": "066f1ad3590596f9aacd601ea89af845"
}

Run the application.

python server.py

Next, open your project’s dashboard on Bugsnag.

		crash

Crashes the library and sends a notification about the nature of the crash.
Basically, almost any unhandled exception sends a notification to Bugsnag.
Pressing this link would lead to an empty page, which is normal.
See server.py, CrashHandler

		crash and use callbacks

Before crashing, the library would append the Diagnostics tab with some
predefined information, attached by means of a callback.
Pressing this link would lead to an empty page, which is normal.
See server.py, CrashWithCallbackHandler

		notify

Bugsnag Python provides a way to send notifications on demand by means of
bugsnag.notify(). This API allows to send notifications manually, without
crashing your code.
See server.py, NotifyHandler

		notify with meta data

Same as notify, but also attaches meta data. The meta data is any additional
information you want to attach to an exception. In this artificial case
additional information will be sent and displayed in a new tab called
Diagnostics.
See server.py, NotifyMetaHandler

		context

The context shows up prominently in the list view so that you can get an idea of
where a problem occurred. You can set it by providing the context option.
See server.py, ContextHandler

		severity

You can set the severity of an error in Bugsnag by including the severity option
when notifying Bugsnag of the error. Valid severities are error, warning and
info.
See server.py, SeverityHandler

 © Copyright .
 Created using Sphinx 1.3.1.

example/django/README.html

 Navigation

 		
 index

 		Bugsnag Python Notifier latest documentation »

Bugsnag Django demo

This Django application demonstrates how to use Bugsnag with the Django web
framework for Python. Before testing it, open up the bugsnag_demo/settings.py
file and configure your API key (see the very bottom of the file).

BUGSNAG = {
 "api_key": "066f1ad3590596f9aacd601ea89af845"
}

Install dependencies.

pip install -r requirements.txt

This minimal setup is enough to start Bugsnagging.

Run the application.

python manage.py runserver

Next, open your project’s dashboard on Bugsnag.

		crash

Crashes the library and sends a notification about the nature of the crash.
Basically, almost any unhandled exception sends a notification to Bugsnag.
Pressing this link would lead to an empty page, which is normal.
See demo/views.py, #crash

		crash and use callbacks

Before crashing, the library would append the Diagnostics tab with some
predefined information, attached by means of a callback.
Pressing this link would lead to an empty page, which is normal.
See demo/views.py, #crash_with_callback

		notify

Bugsnag Python provides a way to send notifications on demand by means of
bugsnag.notify(). This API allows to send notifications manually, without
crashing your code. See demo/views.py, #notify

		notify with meta data

Same as notify, but also attaches meta data. The meta data is any additional
information you want to attach to an exception. In this artificial case
additional information will be sent and displayed in a new tab called
Diagnostics.
See demo/views.py, #notify_meta

		context

The context shows up prominently in the list view so that you can get an idea of
where a problem occurred. You can set it by providing the context option.
See demo/views.py, #context

		severity

You can set the severity of an error in Bugsnag by including the severity option
when notifying bugsnag of the error. Valid severities are error, warning and
info.
See demo/views.py, #severity

 © Copyright .
 Created using Sphinx 1.3.1.

